Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 49(9-10): 507-517, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37460650

RESUMO

Plant-plant signalling via volatile organic compounds (VOCs) has been studied intensively, but its contingency on abiotic conditions (e.g., soil nutrients, drought, warming) is poorly understood. To address this gap, we carried out a greenhouse experiment testing whether soil nutrients influenced signalling between potato (Solanum tuberosum) plants in response to insect leaf herbivory by the generalist caterpillar Spodoptera exigua. We placed pairs of plants in plastic cages, where one plant acted as a VOC emitter and the other as a receiver. We factorially manipulated soil nutrients for both emitter and receiver plants, namely: unfertilized (baseline soil nutrients) vs. fertilized (augmented nutrients). Then, to test for signalling effects, half of the emitters within each fertilization level were damaged by S. exigua larvae and the other half remained undamaged. Three days after placing larvae, we collected VOCs from emitter plants to test for herbivory and fertilization effects on VOC emissions and placed S. exigua larvae on receivers to test for signalling effects on leaf consumption and larval mass gain as proxies of induced resistance. We found that herbivory increased total VOC emissions and altered VOC composition by emitter plants, but these effects were not contingent on fertilization. In addition, bioassay results showed that receivers exposed to VOCs from herbivore-damaged emitters had lower levels of herbivory compared to receivers exposed to undamaged emitters. However, and consistent with VOC results, fertilization did not influence herbivore-induced signalling effects on receiver resistance to herbivory. In sum, we found evidence of S. exigua-induced signalling effects on resistance to herbivory in potato plants but such effects were not affected by increased soil nutrients. These results call for further work testing signalling effects under broader range of nutrient concentration levels (including nutrient limitation), teasing apart the effects of specific nutrients, and incorporating other abiotic factors likely to interact or covary with soil nutrients.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Animais , Herbivoria , Compostos Orgânicos Voláteis/farmacologia , Insetos , Larva/fisiologia , Plantas
2.
J Chem Ecol ; 49(7-8): 465-473, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204553

RESUMO

Plants are often attacked sequentially by multiple enemies. Pathogen sequential co-infections can lead to indirect interactions mediated by plant induced responses whose outcome is contingent on differences in the magnitude and type of plant induced defences elicited by different species or guilds. To date, however, most studies have tested unidirectional effects of one pathogen on another, not discerning between conspecific vs. heterospecific infections, and often not measuring plant induced responses underlying such outcomes. To address this, we conducted a greenhouse experiment testing for the impact of initial infection by two leaf pathogens (Alternaria solani and Phytophthora infestans) on subsequent infection by each of these pathogens on potato (Solanum tuberosum) plants, and also measured induced plant defences (phenolic compounds) to inform on interaction outcomes. We found contrasting results depending on the identity of the initially infecting pathogen. Specifically, initial infection by A. solani drove induced resistance (lower necrosis) by subsequently infecting A. solani (conspecific induced resistance) but had no effect on subsequent infection by P. infestans. In contrast, initial infection by P. infestans drove induced resistance to subsequent infection by both conspecifics and A. solani. Patterns of plant induced defences correlated with (and potentially explained) induced resistance to conspecific but not heterospecific (e.g., in the case of P. infestans) subsequent infection. Overall, these results further our understanding of plant-mediated pathogen interactions by showing that plant-mediated interactions between pathogen species can be asymmetrical and in some cases not reciprocal, that pathogen species can vary in the importance of conspecific vs. heterospecific effects, and shed mechanistic insight into the role of plant induced responses driving such interactions.


Assuntos
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Resistência à Doença , Phytophthora infestans/genética , Plantas Geneticamente Modificadas , Doenças das Plantas
3.
Planta ; 257(2): 42, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683092

RESUMO

MAIN CONCLUSION: VOC emissions increased with herbivore load, but this did not result in concomitant increases in resistance in neighbouring plants, suggesting that communication occurred independently of herbivore load in emitter plants. Herbivore-damaged plants emit volatile organic compounds (VOCs) that can alert neighbours and boost their resistance. While VOC-mediated plant communication has been shown to be herbivore-specific, we know little about its contingency on variation in herbivore load. To address this knowledge gap, we tested herbivore load effects on VOC-mediated communication between potato plants (Solanum tuberosum) using the generalist herbivore Spodoptera exigua. First, we tested whether herbivore load (three levels: undamaged control, low, and high load) affected total VOC emissions and composition. Second, we matched emitter and receiver plants and subjected emitters to the same herbivore load treatments. Finally, we performed a bioassay with S. exigua on receivers to test for induced resistance due to VOC-mediated communication. We found that herbivory significantly increased total VOC emissions relative to control plants, and that such increase was greater under high herbivore load. In contrast, we found no detectable effect of herbivory, regardless of the load, on VOC composition. The communication experiment showed that VOCs released by herbivore-induced emitters boosted resistance in receivers (i.e., lower leaf damage than receivers exposed to VOCs released by control emitters), but the magnitude of such effect was similar for both levels of emitter herbivore load. These findings suggest that changes in VOCs due to variation in herbivore load do not modify the outcomes of plant communication.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Herbivoria , Folhas de Planta , Compostos Orgânicos Voláteis/farmacologia , Animais
4.
Phytochemistry ; 206: 113561, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513136

RESUMO

It has been proposed that plant-plant signalling via herbivore-induced volatile organic compounds (VOCs) should be stronger between closely related than unrelated plants. However, empirical tests remain limited and few studies have provided detailed assessments of induced changes in VOCs emissions across plant genotypes to explain genetic relatedness effects. In this study, we tested whether airborne signalling in response to herbivory between Solanum tuberosum (potato) plants was contingent on plant genetic relatedness, and further investigated genotypic variation in VOCs potentially underlying signalling and its contingency on relatedness. We carried out a greenhouse experiment using 15 S. tuberosum varieties placing pairs of plants in plastic cages, i.e. an emitter and a receiver, where both plants were of the same genotype or different genotype thereby testing for self-recognition, an elemental form genetic relatedness effects. Then, for half of the cages within each level of relatedness the emitter plant was damaged by Spodoptera exigua larvae whereas for the other half the emitter was not damaged. Three days later, we placed S. exigua larvae on receivers to test for emitter VOC effects on leaf consumption and larval weight gain (i.e. induced resistance). In addition, we used a second group of plants subjected to the same induction treatment with the same S. tuberosum varieties to test for herbivore-induced changes in VOC emissions and variation in VOC emissions among these plant genotypes. We found that herbivory drove changes in VOC composition but not total emissions, and also observed quantitative and qualitative variation in constitutive and induced VOC emissions among varieties. Results from the bioassay showed that the amount of leaf area consumed and larval weight gain on receiver plants exposed to damaged emitters were significantly lower compared to mean values on receivers exposed to control emitters. However, and despite genotypic variation in induced VOCs, this signalling effect was not contingent on plant genetic relatedness. These findings provide evidence of VOCs-mediated signalling between S. tuberosum plants in response to S. exigua damage, but no evidence of self-recognition effects in signalling contingent on variation in VOC emissions among S. tuberosum varieties.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Animais , Herbivoria , Spodoptera , Solanum tuberosum/genética , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...